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1. Introduction
This document describes the credible in-flight failure modes for the HESSI Instrument at
the subsystem and component level.  For each failure mode, the effects on the system are
analyzed (including redundancy and work-arounds), and the criticality of the failure is
rated against the Mission Requirements. Failures are analyzed assuming single-point
failures; the effects of multiple failures are not analyzed.  Failures during ground
operations have not been assessed.

Failure mode effects have been categorized as follows:
• Level 1: End of Mission (no science data returned)
• Level 2: Loss of Minimum Science Requirement
• Level 3: Loss of science goal, but still meet minimum science requirements
• Level 4: Recoverable (no loss of science)

Note:  in assigning failure effect categories, where on-orbit mitigation options exist
which have a high likelihood of working, they are assumed to work.

HESSI is a simple single-string spacecraft, so there are many Critical and Severe failure
modes.   This document shall be used as a starting point for risk mitigation planning; to
determine what can be done to reduce the risk of those failures (extended testing, minor
design changes, etc.), and to prepare contingency plans for ground operations for those
failures that have ground-commanded work-arounds (particularly those that require early
action).  Note that most possible design optimizations to reduce risk have already been
made before this document was started.

2. Failure Modes

Summary
Failure Level Number of Failure

Mechanisims
1 19
2 4
3 36
4 47

Total: 107
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1. Spectrometer
1.1. Cryocooler

Any failure of the cryocooler which results in its inability to get the cold
plate to <85°K will violate Mission Requirement INS-1.1, effecting the
mission life due to radiation damage in the detectors and worsening the
detector energy resolution.  The radiation damage can be mitigated by
detector annealing.  Inability to keep the cold plate below 130°K will end
the mission as the detectors will no longer be operable.  The cryocooler is
a limited life item (gas contamination issues).
MITIGATIONS:
• Detector anneal capability to allow operation with poor cryocooler

performance (correct radiation damage)
• Extensive cryocooler qualification
• Thermal design margins.
• Limit operation time of cryocooler on the ground after last gas

recharge.
• Operation of cryocooler in optimal power range for reliability
• On-orbit trending of cooler performance to optimize operational

strategy as the cooler ages.

1.1.1. Cryocooler Failure
>> Level 1.

1.1.2. Loss of performance
1.1.2.1. Cannot keep detectors below 85°K

Reduced Mission life, possible impact on science (detector energy
resolution) – see section 1.1.
>> Level 3

1.1.2.2. Cannot keep detectors below 130°K
>> Level 1

1.1.3. Cooler heater
The cryocooler heater is a replacement heater, only needed when the
cooler is off or at a low power mode.  This is only expected to occur at the
start of the mission (first few hours), and the cooling rate of the cryostat is
sufficiently large to keep the cryocooler warm for on the order of a day.
MITIGATIONS:
• Should the cooler heater fail, the Mission Operations team should get

the cooler operating as soon as possible.
• Cooler heater is on a spacecraft power service that is current limited,

so a short circuit in the heater should not cause other failures.  The
Mission Team should identify an over-current trip on this service and
have a diagnostic procedure in place to determine which load has
failed.
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>> Level 4

1.1.3.1. Short
Loss of heater.  Remainder of systems protected by a current limiter
(circuit-breaker).
>> Level 4

1.1.4. Radiator temperature sensor
The cryocooler heater is remotely controller (by the IDPU) based on a
temperature measurement made by the Radiator Temperature Sensor.  In
addition, the cryocooler operation is controlled to second order by the
cryocooler temperature.  Loss of the temperature measurement will make
it hard to control the cryocooler heater (see 1.1.3), and make it hard to
control the cryocooler optimally.
MITIGATIONS:
• Redundant radiator temperature sensors.
• Indirect control can be used based on modeling and other temperature

sensors on the spacecraft (requires Mission Operations team
intervention).

>> Level 4

1.1.5. Harness Failure
A failure of the primary load carrying part of the cryocooler harness is
identical to a cryocooler failure (1.1.1), ending the mission.  A failure of
the balancer service would cause spacecraft vibrations which might
degrade science by moving the spacecraft imaging axis or microphonic
pick-up in the detectors.
MITIGATIONS:
• Redundancy in the primary load-carrying harness wires and connector

pins.
• Solar Aspect System can be operated at a high rate to model vibrations

(some loss of science due to increased SAS telemetry impact on
primary science downlink capability).

• Detectors designed to provide maximum immunity to microphonics.
1.1.5.1. Short

End of mission (loss of cooler).  May be able to survive a short in the
balancer service if the short causes the drive FET to fail open (must
operate without a balancer, degraded science)
>> Level 1

1.1.5.2. Open
Degraded science, may still meet minimum science objectives.
>> Level 3

1.2. Cryostat
1.2.1. Vacuum failure
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A failure during launch could contaminate the detectors and/or provide
sufficient gas in the cryostat to make it hard to cool down.  On-orbit a
vacuum failure has no effect.  Detector contamination could reduce the
detector life or, in a severe case, render them useless (end of mission).
Inability to cool the detectors is also critical (see 1.1).
MITIGATIONS:
• Vibration testing of the cryostat at subsystem and mission levels in the

launch configuration to verify the design
• A vacuum valve has been added to the cryostat to allow the

spectrometer to vent to space.  The valve will be opened by ground
command if the detectors are found to be contaminated, if there is too
much gas in the cryostat to allow the cooler to reach temperature, or if
the detectors need to be annealed due to radiation damage.  This
contingency should solve any problem caused by a vacuum failure
during launch.

>> Level 4

1.2.2. Coldplate Heater
The cold plate heater is required to perform a controlled cryostat warmup
such that out-gassing products from the thermal blankets do not
contaminate the detectors (on the ground).  It is also used to anneal the
detectors in case of detector contamination or excessive radiation damage
(this is a contingency operation).  Warm-ups are only performed on the
ground, and anneal mode is a contingency mode operation (not expected
to be required)
MITIGATIONS:
• Heater Redundancy.  There are three separately conditioned cold plate

heaters.  They do have a common power supply (see section 3.1.1.1.5).
• Cryosorb material in the cryostat will help protect the detectors from

contamination in the absence of the heaters.
1.2.2.1. Open

Heater redundancy will overcome this problem.
>> Level 4

1.2.2.2. Short
Separate heater conditioning circuitry should allow the remaining heaters
to continue to operate even if one is shorted.
>> Level 4

1.2.3. Loss of temperature sensor
Temperature sensors in the cryostat are used to monitor the cryostat cool-
down and operation.  Knowledge of temperatures in the cryostat is
required for correct operation of the cryocooler and to correct the detector
energy spectrum.
MITIGATIONS:
• Temperature sensor redundancy.
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• Loss of temperature information in the cryostat could be worked
around with thermal modeling and pre-launch data to some extent.

>> Level 4

1.2.4. Loss of cryosorb
The cryosorb material in the cryostat absorbs contaminants to keep them
away from the detectors.  Detector contamination issues are described in
1.2.1 and 1.2.2.

MITIGATIONS:
• A contingency system (vacuum valve and cold plate heaters) allows

the detectors to be annealed, which should drive off any contaminants.
>> Level 4

1.2.5. Loss of S-link
The S-link connects the cryocooler to the cold plate (via the Sapphire
link).  The S-link provides a physically flexible thermal path, keeping
launch loads off the cryocooler cold-tip and cryocooler operational
vibration off the detector (microphonics).  Failure of the S-link (loss of
thermal connection between the cryocooler and coldplate) will keep the
detectors from getting cold, which ends the mission.
MITIGATIONS:
• Vibration testing at subsystem and mission levels to prove the

resiliency of the S-link.  Operational tests to prove the thermal and
vibration-damping characteristics before and after vibration.

>> Level 1

1.2.6. Loss of Sapphire link
The Sapphire link connects the cryocooler (via the S-link) to the coldplate.
The sapphire link provides a thermal switch, having good conductivity at
low temperature and poorer conductivity at higher temperatures.  This is
important is controlling the cool-down of the detectors such that they do
not get contaminated. Failure of the sapphire-link (loss of thermal
connection between the cryocooler and coldplate) will keep the detectors
from getting cold, which ends the mission.
MITIGATIONS:
• Vibration testing at subsystem and mission levels to prove the

resiliency of the S-link.  Operational tests to prove the thermal and
vibration-damping characteristics before and after vibration.

>> Level 1

1.2.7. Loss of intermediate stage attachment of cooler to thermal shield
This attachment allows the thermal shield and thermal blankets to get
cold while the detectors are kept warm by the coldplate heater.  This is
important for the cryostat cool-down cycle at the start of the mission to
keep the detectors from being contaminated.  Detector contamination and
mitigations (anneal cycle) are described in 1.2.4.  You might also impact
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thermal performance, which in the worst case could be a Level 1 problem
(see 1.2.8)

>> Level 1

1.2.8. Thermal blanket or thermal shield failure
The thermal shield and thermal blankets are important to the ability of the
cryostat to keep the detectors cold.

1.2.8.1. Cannot keep detectors below 85°K
Reduced Mission life, possible impact on science (detector energy
resolution) – see section 1.1.
>> Level 3

1.2.8.2. Cannot keep detectors below 130°K
>> Level 1

1.2.9. Cold plate strap failure
The cold plate straps suspend the coldplate in the cryostat with minimum
thermal conduction, while maintaining adequate support for launch loads.
Loss of a strap during launch could cause physical damage to the
detectors, ending the mission.  Loss of a strap at any time could effect the
thermal performance of the cryostat.  Thermal performance issues and
mitigations are described in section 1.1.
MITIGATIONS (mechanical failures):
• Adequate design margins
• Finite Element modeling and mechanical stress testing of the strap

assemblies.
• Cryostat vibration testing at subsystem and mission levels to prove the

reliability of the strap assembly.  Operational tests to prove the thermal
characteristics before and after vibration.

>> Level 1

1.2.10. Liquid Nitrogen system
This is a ground support system only.  The only credible failure mode
during launch and orbit is a vacuum leak, which is covered in section
1.2.1.
>> Level 4

1.2.11. Accelerometer
The accelerometer is used to measure the cryocooler vibrations and their
transmission to the cryostat on-orbit.  This is a diagnostic measurement.
The system will meet all requirements without the accelerometer.
>> Level 4

1.3. Vacuum Valve
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The vacuum valve is part of a contingency system to allow the detectors to
be annealed in the event of detector contamination or radiation damage, or
cryostat over-pressure.  It should not be required for nominal operations.

1.3.1. Cannot open
If the valve cannot be opened, the detectors cannot be annealed.
Annealing is a contingency operation.
MITIGATIONS:
• The valve actuator is redundant.
>> Level 4

1.3.2. Premature opening
This is equivalent to a loss of vacuum (1.2.1)
>> Level 4

1.3.3. Harness
Failure of the harness is the same as 1.3.1 (cannot open), and is mitigated
by the redundant actuator (which has its own harness and switch).
>> Level 4

1.3.3.1. Short
The actuator service should be protected from a short in the actuator
harness by spacecraft bus current limiters on the instrument switched
service supply.  The failure should not effect any other systems.
>> Level 4

1.4. GeD
There are 9 Germanium detectors, which are the primary science data
collectors.  Minimum science can still be achieved if one of the detectors
is lost.

1.4.1. Noisy detector
A noisy detector must be ‘fixed’ or it will swamp the telemetry system.
MITIGATIONS:
• A noisy detector can sometimes be fixed by raising a programmable

threshold for that detector.  The threshold can be raised as high as
20keV (from about 3keV) on all detectors and still meet minimum
science requirements.

• If the noise is due to contamination it might be mitigated by an anneal
cycle.

• If the noise cannot be reduced to acceptable levels, telemetry from the
noisy detector can be disabled (the remaining detectors will be
unaffected).

>> Level 3

1.4.2. Detector Contamination
Detector contamination will result in a poorly performing detector.
MITIGATIONS:
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• An anneal cycle should improve a contaminated detector’s
performance.

>> Level 4

1.4.3. Excessive radiation damage
Radiation damage will result in a poorly performing detector.
MITIGATIONS:
• An anneal cycle should improve a radiation damaged detector’s

performance.
>> Level 4

1.4.4. Dead detector
If the detector cannot be revived (perhaps by an anneal cycle). Minimum
science requirements will still be met.
>> Level 3

1.4.5. HV contact failure
This will result is loss of data from the affected detector.  Minimum
science requirements will still be met.
>> Level 3

1.4.6. Signal contact failure
This will result is the loss of data from the affected segment of the affected
detector.  Minimum science requirements will still be met.
>> Level 3

1.4.7. FET failure
This will result is the loss of data from the affected segment of the affected
detector.  Minimum science requirements will still be met.
>> Level 3

1.4.8. Internal harness / feed-thru
Loss of one segment or a whole detector.  Minimum science requirements
will still be met.
>> Level 3

1.4.8.1. Short
The power supply is protected such that a failure in the internal harness
cannot affect more than one detector.
>> Level 3

1.4.9. Internal HV harness
Each detector has an individual high voltage supply.

1.4.9.1. Open
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Loss of the affected detector. Minimum science requirements will still be
met.
>> Level 3

1.4.9.2. Short
Loss of the affected detector.  No affect on other detectors.  Minimum
science requirements will still be met.
>> Level 3

1.4.9.3. Arc
A high voltage arc could cause damage to the detector, FET or CSA
depending on the current path of the arc.  Continuous arcing will also be a
noise problem, which can be eliminated by turning off the offending high
voltage supply.  Unlikely to affect more than one detector and minimum
science can be met with the loss of a detector.
>> Level 3

1.5. CSA
Each detector segment has a separate Charge Sensitive Amplifier (CSA).
These CSAs are mounted on the outside of the spectrometer, with the two
CSAs for each detector mounted in a common box.

1.5.1. Dead CSA
Loss of detector segment. Minimum science requirements will still be met.
>> Level 3

1.5.2. Noisy CSA
A noisy CSA must be ‘fixed’ or it will swamp the telemetry system.
MITIGATIONS:
• A noisy CSA can sometimes be fixed by raising a programmable

threshold for that detector.  The threshold can be raised as high as
20keV (from about 3keV) on all detectors and still meet minimum
science requirements.

• If the noise cannot be reduced to acceptable levels, telemetry from the
noisy detector can be disabled (the remaining detectors will be
unaffected).

>> Level 3

1.5.3. Harness
A short or open in a CSA harness can only effect the CSAs for one
detector (power to the affected CSA can be individually switched off).
Minimum science requirements will still be met.
>> Level 3

1.6. HV Filter
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Each detector has an individual high voltage supply, which is filtered by
individual filters mounted to the outside of the Spectrometer.

1.6.1. HV noisy
Should the filter fail in such a way that noise was getting into the
spectrometer via the high voltage supply, the associated detector would
get noisy.  If the noise level was sufficiently high, multiple detectors might
be effected.
MITIGATIONS:
• A noisy detector can sometimes be fixed by raising a programmable

threshold for that detector.  The threshold can be raised as high as
20keV (from about 3keV) on all detectors and still meet minimum
science requirements.

• If the noise cannot be reduced to acceptable levels, telemetry from the
noisy detector can be disabled (the remaining detectors will be
unaffected).

>> Level 3

1.6.2. HV Harness:
External high voltage harness failures are identical to internal failures.
(1.4.9)
>> Level 3

1.7. Service Filter
The service filter contains EMC filters on cold plate heater and
temperature sensor circuits going into the cryostat to keep noise out.  It
also contains conditioning circuits for the temperature sensor and
accelerometer (see 1.2.11).  The service filter is mounted on the outside of
the cryostat.

1.7.1. Services noisy
Should the filter fail in such a way that noise was getting into the
spectrometer via the heaters or temperature sensors, one or more detectors
might get noisy.
MITIGATIONS:
• A noisy detector can sometimes be fixed by raising a programmable

threshold for that detector.  The threshold can be raised as high as
20keV (from about 3keV) on all detectors and still meet minimum
science requirements.

• If the noise cannot be reduced to acceptable levels, telemetry from the
noisy detector(s) can be disabled (the remaining detectors will be
unaffected).

>> Level 3

1.7.2. Coldplate Heater
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The coldplate heater is described in section 1.2.2.  It is a redundant
system.
>> Level 4

1.7.3. Temperature sensor conditioning
Temperature sensors are described in section 1.2.3.  Critical temperature
sensors are redundant.
>> Level 4

1.7.4. Harness:
Most of the harness carries redundant signals.  The only problem is the
power service to the temperature sensor conditioning circuit.  Loss of this
service would cause the loss of all internal cryostat temperature
information.
MITIGATIONS:
• Indirect control can be used based on modeling and other temperature

sensors on the spacecraft (requires Mission Operations team
intervention).

>> Level 4

1.7.4.1. Short
A short in the power bus to the service filter could short the power for
critical electronics in the IDPU.  For this reason the service is resistively
current limited.
>> Level 4

1.8. Shutters / Attenuators
The shutter attenuators are not required to meet minimum science
requirements.

1.8.1. Failure to uncage
The shutters will remain in their default location.
>> Level 3

1.8.2. Stuck at a stop
MITIGATIONS:
• An emergency un-stick actuator can be used to put the shutter back

into the default location.  This might unstick the actuator, putting it
back into service, it might lock the shutter into the default location, or
it might do nothing.  Even if it does nothing, minimum science
requirements can be met with the attenuators at any stop.

>> Level 3

1.8.3. Stuck between stops
MITIGATIONS:
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• An emergency un-stick actuator can be used to put the shutter back
into the default location.  This might unstick the actuator, putting it
back into service, it might lock the shutter into the default location, or
it might do nothing.  If it does nothing and the shutter remains stuck
half way in, significant analysis will have to be done on the ground to
understand the detector response, but minimum science requirements
should still be met.

>> Level 3

1.8.4. Position Sensors
The position sensors tell the IDPU how to run the actuators and tell the
ground data processing where the shutters are.  Failure of one sensor can
be worked around, with some ambiguity of exactly when the shutter
reaches its stop, causing some undesirable loss of science data.
>> Level 3

1.8.5. Harness
Failure of the harness is equivalent to failure of an actuator or sensor.
>> Level 3

1.8.5.1. Short
Protection circuits should limit the failure to a single actuator.
>> Level 3

2. Imager / RAS
2.1. Alignment

2.1.1. Grid tray twist
Grid tray twist will reduce the x-ray modulation, resulting in a loss of
image contrast at the finest resolution.  Grid tray twist can be measured
on-orbit using the SAS.  The failure classification depends on the amount
of twist, as called out in Mission Requirement 2.5.

2.1.1.1. Grid Tray Twist of < 1.7 arc minutes
Acceptable modulation
>> Level 4

2.1.1.2. Grid Tray Twist of <  3 arc minutes
Loss of modulation at finest resolution, but sill meet minimum science
requirements
>> Level 3

2.1.1.3. Grid Tray Twist of >  3 arc minutes
Loss of minimum science resolution, but mission continues with impaired
resolution plus spectroscopy
>> Level 2
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2.1.2. Grid twist
An individual grid twisting is less serious than the whole tray twisting
since only one resolution element is effected, and minimum science can be
achieved with the loss of any one grid-pair.   Also, the tolerance to twist is
only tight on the finest grid.
>> Level 3

2.1.3. SAS/RAS co-alignment
Loss of SAS-RAS co-alignment knowledge will affect the ability to place
images on the sun.
MITIGATIONS:
• The SAS to RAS co-alignment can be determined in-flight using

visible sun-spot features
>> Level 4

2.1.4. Imager Alignment to Bus (Spin axis)
If the imager axis is not aligned with the spacecraft spin axis, the imager
axis will not meet its alignment requirement (0.2 degrees of the sun).
MITIGATIONS:
• The Bus includes Inertia Adjustment Mechanisms that can be used on-

orbit to adjust the imager axis with the spin axis.
>> Level 4

2.1.5. Alignment to Spectrometer
If the Imager-to-Spectrometer alignment is not maintained (to 1mm), the
grids will not be aligned with the sensitive area on the detector, and
sensitive area will be lost.  Given the size of the tolerance, a significant
loss in sensitivity is unlikely.
>> Level 3

2.2. Grid Tray heaters
The grid tray heaters are required to maintain the grid trays at the same
temperature (to 3C).  Failure could cause the grid pitches on the trays to be
different due to thermal expansion, decreasing the modulation efficiency
of the finest grids.  Even without the heaters, the temperature difference
would not be large, and only the most sensitive grids would be affected.
MITIGATIONS:
• Redundant heaters, harness, and switches.  Redundant temperature

sensors.
>> Level 4

2.2.1. Short
MITIGATIONS:
• The circuit is protected by current limiters in the spacecraft, and the

harnessing and switches are redundant.
>> Level 4
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2.3. Grid Tray Thermistor
There are 4 thermistors on each grid tray.  The grid tray thermistors are
required for controlling the grid tray heaters, and also as a diagnostic to
measure the variation in temperature.  Loss of tall temperature information
on the trays would delete the possibility of controlling the grid tray
heaters.  Loss of a single thermistor will reduce some diagnostic
capability, but should not impact science.
MITIGATIONS:
• Redundant thermistors (4)
>> Level 4

2.4. Thermal Performance (blanket)
The tube and grid trays are blanketed to help keep the tube and grid trays
isothermal.  This prevents distortions due to uneven heating, and reduces
the power budget for the grid tray heaters.  Loss of performance in the
blanketing could cause the tube to twist (unlikely since the tube points at
the sun), or the grid tray heater capability could be exceeded.  Either could
reduce modulation efficiency in the finest grids.
MITIGATIONS:
• Excess heating capacity in the grid tray heaters (using redundant

heaters)
• Test of the tube twist in non-isothermal conditions shows no

significant twist.
>> Level 4

2.5. Antenna Mount
Failure of the antenna mount would cause the forward antenna to point in
an indeterminate location, or in worst case might short the forward
antenna.
MITIGATIONS:
• In the worst case, the rear antenna is still available and electrically

isolated by the switch.  There would be a loss of data downlink
capacity, which could be mitigated by extra ground contacts.

>> Level 4

2.6. FSS Mount
The Fine Sun Sensor is used to point the spacecraft at the Sun.  Loss of the
FSS mount could make the FSS pointing indeterminate, or in the worst
case could disable the FSS.
MITIGATIONS:
• The SAS can be used by the ACS to point the spacecraft at the Sun.
>> Level 4
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2.7. SAS
The SAS is used to determine the position of the Sun in the imager FOV.
Failure of the SAS would make it difficult or impossible for the ground
software to reconstruct images.  There are 3 SAS detectors, any two of are
sufficient for the imaging task.  The third SAS provides a twist diagnostic
(not a science requirement).
MITIGATIONS:
• The SAS sensors are redundant.
>> Level 4

2.7.1. Harness Short
MITIGATIONS:
• The SAS sensors are redundant, with separate wiring and power

limiter / switches.
>> Level 4

2.8. RAS
The RAS provides the roll-aspect data needed to position the image on the
sun, as well as the accurate roll-rate data needed to generate images.
MITIGATIONS:
• RAS-PMT should make the same measurement
• The SAS sensors can be used to get roll rate data (provided nutation

effects are small and the spin axis is not exactly aligned with the
imager axis).

• The SAS can also be used to get absolute roll angle data by looking for
optical solar flares and matching with known flare locations using
ground observatories.  This requires special full-detector readouts from
the SAS (this capability exists, but takes more telemetry).

• The magnetometer can be used (with low resolution) to get roll rate
and absolute roll information using filed models.  This is probably not
adequate for imaging, but can serve as a starting point for the SAS data
analysis.

>> Level 4

2.8.1. Harness Short
MITIGATIONS:
• The RAS harness power is separately switched and limited.  Only the

RAS will be effected by a short.
>> Level 4

2.9. RAS-PMT
The RAS-PMT is a backup to the RAS.  It makes the same
measurement in a slightly different way.  If it fails, the RAS will make
the measurement
>> Level 4
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3. IDPU
3.1. IPC

3.1.1. LVPS
3.1.1.1. Service Failure

3.1.1.1.1. +5VD, +/-12V, +/-5V
Loss of one of these supplies prevents and science data from being
collected.
MITIGATIONS:
• Overridable current limiter in the spacecraft bus on the Instrument

power service from which these supplies derive (protects against
temporary fault)

• .Individual current limiters on each of these services in the IPC
>> Level 1

3.1.1.1.2. +15V
This supply is only used by the ADP.  Loss of this supply would disable
the RAS and SAS data collection, virtually eliminating the ability to image
MITIGATIONS:
• Overridable current limiter in the spacecraft bus on the Instrument

power service from which this supply derives (protects against
temporary fault)

• .Individual current limiter on this services in the IPC
>> Level 2

3.1.1.1.3. +28V
This is a secondary regulated supply used as the source for the +5D, +/-5,
+/-12, and +15 as well as the HVPS.
MITIGATIONS:
• Overridable current limiter in the spacecraft bus on the Instrument

power service from which this supply derives (protects against
temporary fault)

>> Level 1

3.1.1.1.4. Actuator Power
This supply provides power for the actuators.  Failure of this supply will
disable the following:

• Shutters.  These are not required for minimum science (see
section 1.8).

• Vacuum Valve. This is not required for normal operations (see
section 1.3)

• RAS Shutter.  If the service fails before the RAS shutter is
opened, the RAS would be lost (see section 2.8)

MITIGATIONS:
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• Overridable current limiter in the spacecraft bus on the Switched
Service power service from which this supply derives (protects
against temporary fault)

• See mitigations in sections 1.8, 1.3, and 2.8.
>> Level 3

3.1.1.1.5. Cold Plate heater Power
This supply provides power for the cold plate heaters.  Loss of cold plate
heater power (see section 1.2.2).  Contingency mode operation only on-
orbit.
MITIGATIONS:
• Overridable current limiter in the spacecraft bus on the Instrument

power service from which this supply derives (protects against
temporary fault)

>> Level 4

3.1.1.2. Regulation Failure
Loss of regulation would cause the secondary voltages to track the
primary.  This could put the instrument out of calibration, and possibly
degrade instrument operation.
MITIGATIONS:
• Secondary voltage monitors can be used to attempt to recover at least

some of the data on the ground.
>> Level 2

3.1.1.3. Noisy Service
An excessively noisy service could insert noise into the sensitive detector
electronics, degrading instrument performance
MITIGATIONS:
• Bypass filtering in IDPU VME box should remove any noise

generated by the IPC (redundant filtering).
• Instrument thresholds can be raised above the noise threshold, at the

loss of low energy measurements
 >> Level 3

3.1.1.4. Current monitor failure
The current monitors are diagnostics only
  >> Level 4

3.1.1.5. IDPU harness failure
The IDPU harness takes the output of the IPC to the IDPU VME box.
Loss of any one of several wires in the IDPU harness would disable all
data collection.
>> Level 1
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3.1.1.6. Spacecraft Harness failure
The spacecraft to IPC harness provides primary power to the IPC, and
from there to the rest of the instrument. Loss of any one of several wires in
the Spacecraft harness would disable all data collection.
>> Level 1

3.1.2. HVPS Failure
There are 9 High Voltage Power Supplies providing bias to each of the
nine GeDs.  Failure of one HVPS would disable the associated detector.
The primary power for the nine HVPS is common.

3.1.2.1. Loss of one HVPS
>> Level 3

3.1.2.2. Loss of all 9 HVPS
This can be caused by a failure on the primary side of any one HVPS.
>> Level 1

3.1.2.3. HVPS Noisy
A sufficiently high noise level to get into the cryostat could add noise to
one or more of the detector signals.
MITIGATIONS:
• The output of each HVPS is heavily filtered by the HV Filter before

entering the Cryostat.
• The detector thresholds can be raised to eliminate noise at the cost of

low energy measurements.
 >> Level 3

3.1.2.4. HVPS Regulation
Loss of HVPS regulation would cause the output to vary with primary
voltage level, load variations, and temperature, and would invalidate the
supply calibration.
MITIGATIONS:
• There is virtually no load on the HVPS, and the input is already

regulated.  Thermal variations over the expected temperature range
should be small.

• The output of the supply is monitored, and slow variations could be
compensated for by varying the control voltage

• At worst, only one detector is lost, and minimum science can still be
achieved.

 >> Level 3

3.1.3. Thermostat / Heater
The IPC thermostat controls the IPC heater to keep the IPC above its
minimum turn-on temperature.  Once turned on, the IPC is expected to
achieve operational temperature without heating.  Also, given the close
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coupling to the deck, it is unlikely that the minimum turn-on temperature
would be a problem (this heater is a backup system).

3.1.3.1. Thermostat failed closed
The heater would be on whenever the IDPU heater power service was
powered on, possibly over-heating the IPC (this is considered an unlikely
failure mode).
MITIGATIONS:
• The IPC temperature and heater power service current can be

monitored from the ground, and the IDPU heater service can be
switched off if the it appears the IPC thermostat is stuck on.  Given
the size of the IPC heater and the IPC conduction capability to the
deck, the IPC should not overheat before the ground can intervene.

 >> Level 4

3.1.3.2. Thermostat failed open, harness open,  or heater failed
The IPC could not be heated.  This should not be a problem for the
nominal mission design.
>> Level 4

3.1.3.3. Harness short
MITIGATIONS:
Current limiters on the IDPU heater service would prevent this problem
from propagating.  Loss of IDPU heaters should not be a problem for the
nominal mission design
>> Level 4

3.2. CPC
3.2.1. Main service failure

Loss of the CPC main output will disable the cryocooler, ending the
mission.
>> Level 1

3.2.2. Balance service failure
A failure of the balancer service would cause spacecraft vibrations which
might degrade science by moving the spacecraft imaging axis or
microphonic pick-up in the detectors.
MITIGATIONS:
• Solar Aspect System can be operated at a high rate to model vibrations

(some loss of science due to increased SAS telemetry impact on
primary science downlink capability).

• Detectors designed to provide maximum immunity to microphonics
>> Level 3
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3.2.3. Heater / Temperature sensor failure
Same as IPC Heater / Thermostat (section 3.1.3)
>> Level 4

3.2.4. Spacecraft Harness
The spacecraft to CPC harness provides primary power to the CPC, and
from there to the cryocooler. The power service to the CPC is carried on
redundant wires.  However an open wire would cause excessive current to
flow in the remaining wire.
>> Level 1

3.3. IDPU VME Box
The IDPU VME box consists of a 12 boards connected by a common
signal and power bus.  Failures on any board which can propagate to the
bus are considered separately in section 3.3.5.

3.3.1. Detector Interface
There are 9 Detector Interface Boards, one for each detector.  Minimum
science requirements can be achieved with the loss on one of these boards.
>> Level 3

3.3.2. Aspect Data Processor
The ADP is the interface between the Aspect sensors (RAS and SAS) and
the IDPU.  Failure of the ADP would cause loss of key solar aspect
information, making imaging nearly impossible.
>> Level 2

3.3.3. Data Controller
All science data goes through the Data Controller.  Almost any failure on
the Data Controller is catastrophic.
>> Level 1

3.3.4. Power Controller
All instrument power except the cryocooler power goes through the Power
Controller, where it is switched, routed, and monitored.

3.3.4.1. HV control
The Power Controller includes 9 DACs to control the detector HV
supplies.  Minimum science can be achieved with the loss of any one
HVPS.
>> Level 3

3.3.4.2. Cooler control
The Power Controller generates the control waveforms for the CPC.  Loss
of these signals would disable the cooler.
>> Level 1
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3.3.4.3. Grid Tray heater control
The Imager heater is described in section 2.2.
 MITIGATIONS:
• Redundant heaters, harness, and switches.
>> Level 4

3.3.4.4. Actuator control
Loss of actuator services is discussed in section 3.1.1.1.4
>> Level 3

3.3.4.5. Cryocooler Heater control
Loss of the cryocooler heater is discussed in section 1.1.3.
>> Level 4

3.3.4.6. CPC Heater control
Loss of the CPC heater is discussed in section 3.2.3.
>> Level 4

3.3.4.7. Coldplate Heater Control
Loss of a coldplate heater is discussed in section 1.2.2.
>> Level 4

3.3.4.8. Temperature sensor conditioning
Temperture sensors are described above.
MITIGATIONS:
• All significant temperature sensors are redundant.
>> Level 4

3.3.4.9. Accelerometer conditioning
Loss of accelerometer data in section 1.2.11.
>> Level 4

3.3.4.10. Voltage/Current Monitors
All voltage monitors are diagnostic.
>> Level 4

3.3.5. Common Bus failure
Almost any failure of the bus or a short in an interface to the bus is
catastrophic.
>> Level 1

3.3.6. Spacecraft Harness
The spacecraft to IDPU harness caries all science data to the spacecraft.
Most failures in this harness are catastrophic.
>> Level 1
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3.3.7. Thermostat / Heater
Same as IPC Heater / Thermostat (section 3.1.3)
>> Level 4


